1. Show that the set of polynomials with integer coefficients:

$$\mathcal{P} = \{ p : p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, \quad n \in \mathbb{N} \bigcup \{0\}, a_j \in \mathbb{Z}, 0 \le j \le n, a_n \ne 0 \}$$

is countable.

Solution: For each $n \in \mathbb{N} \bigcup \{0\}$, let \mathcal{P}_n denote the set of polynomials degree n with integer coefficients. i.e.,

$$\mathcal{P}_n = \{ p : p(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n, a_j \in \mathbb{Z}, 0 \le j \le n, a_n \ne 0 \}$$

Then \mathcal{P}_n is bijective to the set $A = \mathbb{Z} \times \mathbb{Z} \times \cdots \times \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. Since finite product of countable set is countable, A is countable and thus \mathcal{P}_n is countable for each $n \in \mathbb{N} \bigcup \{0\}$. As countable union of countable sets, $\mathcal{P} = \bigcup_{n=0}^{\infty} \mathcal{P}_n$ is countable.

2. Prove that the set of natural numbers is not bounded above.

Solution: Assume by the way of contradiction that \mathbb{N} is bounded above. Since \mathbb{N} is non-empty set, it follows from the l.u.b axiom that $\sup(\mathbb{N})$ exists. Thus, there must be $m \in \mathbb{N}$ such that $\sup(\mathbb{N}) - 1 < m$. This implies that $\sup(\mathbb{N}) < m + 1$, where $m + 1 \in \mathbb{N}$. This is a contradiction. Therefore, \mathbb{N} is not bounded above.

3. Let $I_n = [a_n, b_n]$ be a nested family of closed intervals, that is, $a_n, b_n \in \mathbb{R}$, $a_n < b_n$, with $a_n \le a_{n+1}$ and $b_n \ge b_{n+1}$ for every n. Assume that $\lim_{n\to\infty} (b_n - a_n) = 0$. Suppose $\{x_n\}_{n\ge 1}$ is a sequence of real numbers, where $x_n \in I_n$ for every n. Show that $\{x_n\}_{n\ge 1}$ is convergent.

Solution: By Cantor's intersection theorem (See Theorem 3.10, Principles of Mathematical Analysis by Walter Rudin), $\bigcap_{n=0}^{\infty} I_n$ is exactly a singleton set, $\{x\}$ (say). Thus $x \in I_n$ for all n. Consequently, we have

$$|x_n - x| \leq \operatorname{diam}(I_n) = b_n - a_n.$$

Since $\lim_{n \to \infty} (b_n - a_n) = 0$, $\{x_n\}_{n \ge 1}$ is convergent to x.

- 4. Find lim sup and lim inf of following sequences of real numbers:
 - (i) $\{a_n\}_{n\geq 1}$ where $a_n = \frac{1}{n+1} \frac{1}{n}$ for $n \in \mathbb{N}$;

Solution: Since

$$a_n = \frac{1}{n+1} - \frac{1}{n} = \frac{-1}{n(n+1)} \to 0 \text{ as } n \to \infty,$$

 $\limsup a_n = \liminf a_n = \lim_{n \to \infty} a_n = 0.$

(ii) $\{b_n\}_{n\geq 1}$ where

$$b_n = \begin{cases} 3 & \text{if } n = 3k - 2, k \in \mathbb{N} \\ 5 + \frac{10}{n} & \text{if } n = 3k - 1, k \in \mathbb{N} \\ 6 & \text{if } n = 3k, k \in \mathbb{N} \end{cases}$$

Solution: All the subsequential limits of b_n 's are 3,5 and 6. Hence, $\limsup a_n = 6$ and $\limsup a_n = 3$.

5. Show that a sequence $\{a_n\}_{n\geq 1}$ of real numbers is convergent if and only if it is Cauchy.

Solution: See part (a) and part (c) of Theorem 3.11 from the book on Principles of Mathematical Analysis by Walter Rudin. \Box

- 6. Find the set of cluster points of following subsets of \mathbb{R} :
 - (i) $A = \{2 + \frac{(-1)^n}{7n} : n \in \mathbb{N}\};$

Solution: As $\frac{(-1)^n}{7n} \to 0$ as $n \to \infty$, we get $2 + \frac{(-1)^n}{7n} \to 2$ as $n \to \infty$. Thus, cluster points of the set A is the singleton set $\{2\}$.

(ii) $B = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}.$

Solution: For each fixed $m \in \mathbb{N}$, $\frac{1}{m} + \frac{1}{n} \to \frac{1}{m}$ as $n \to \infty$ and $\frac{1}{m} + \frac{1}{n} \to 0$ when m and n approches ∞ together. Hence, cluster points of the set B is $\{0, 1, \frac{1}{2}, \frac{1}{3}, \ldots\}$.

7. Let $h : \mathbb{R} \to \mathbb{R}$ be a function satisfying

$$|h(x) - h(y)| \le 10|x - y|, \quad \forall x, y \in \mathbb{R}.$$

Show that h is continuous.

Solution: Let $\epsilon > 0$ be given. Choose $\delta = \epsilon/10$. If $|x - y| < \delta$, then

$$|h(x) - h(y)| \le 10|x - y| < 10\delta = \epsilon.$$

Hence, h is continuous at every point of \mathbb{R} .